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Abstract

In an ever-changing world with the emergence of zero-day threats becoming ever more
common, it is imperative that the networks of the world possess the capabilities to
defend and protect themselves from malicious attacks without active human
involvement and oversight. It is likewise of great importance that the networks of the
world possess the ability to adapt to the ever-increasing internet usage found in the
modern world, without surges of activity causing congestion, delay, or loss of data. With
unforeseen situations causing conflict and inducing stress upon worldwide networks,
such as during the coronavirus pandemic [1], a solution needs to be implemented that
can respond to and circumvent disaster without human involvement. With the
widespread use of algorithms, actively maintained databases, and human involvement,
currently adopted solutions are able to reduce conflict for the most part. It goes without
saying that there is clear room for improvement, such as may be seen in the reduction
of human involvement. In this paper we review machine learning applications and their
ability to improve upon existing solutions to the issues discussed above through careful
application.
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1. Introduction

This paper sets out to fulfill what are believed to be two areas of concern in existing

surveys concerning the applications of machine learning. The first concern is shown in

the presentation of both [2], [3], and [4] which while being recent and encompassing

their specific area of research, do not serve to present a broadened picture for the

applications of machine learning. The second concern is seen in that the most recent

survey for an encompassing picture of machine learning applications was completed

and published in 2019 [5]. During the time since the encompassing survey was

completed, it is the belief of our team that it has become outdated, with areas of

application mentioned within being further researched and developed. With these two

concerns in mind, this survey sets out to fulfill both of them and therefore present a

modern picture for the applications of machine learning on computer networks in 2021.

In this survey we have divided the contents into three parts which are believed to be the

cornerstones in the applications for machine learning. The first and most important

application is addressed in Section 3 wherein the current research progress and

applications of traffic classification are both presented and discussed. This is perceived

to be the area of greatest importance in machine learning applications, as all other

applications utilize traffic classification and observation in order to fulfill their individual

mandates. In Section 4, the applications of machine learning concerning mitigation of

network threats such denial-of-service attacks (DOS) and distributed denial-of-service

attacks (DDOS) are discussed and reviewed. Section 5 discusses the usage of machine

learning for improved congestion control for network traffic. In Section 2 the concepts
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surrounding the implementation and application of machine learning are briefly

introduced.

2. Background Information

Machine learning is a technique in computer science that focuses on the development

of novel algorithms under three main branches of implementation of algorithmic

learning: supervised, unsupervised, and reinforcement. Machine learning is a valuable

tool, when properly implemented it is able to outperform humans in areas such as

problem recognition, reaction time, and solution development. These traits are desirable

in a world that is developing faster than any single team or individual can comprehend,

machine learning allows massive datasets to be aggregated into coherent results that

previously may have been foregone by human operators or taken longer to be realized.

This ability to coalesce multiple data points into actionable values and methods is why

machine learning is well suited to tackle problems facing computer networks during

modern times. Machine learning is aptly suited to both aid in development and for

integration into computer networks so that they may possess the ability to operate in a

hands-off, optimized approach that is able to better serve a computer network than

algorithms that currently exist for traffic observation, threat mitigation, and traffic

congestion control.

Machine learning operates under the three branches that will be briefly discussed in this

section before being showcased in their use-cases in the following sections. Supervised

learning operates using labelled data and seeks to predict a determined outcome/future
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event based upon the data given. Unsupervised learning utilizes non-labelled data and

is used to locate and classify data structures (such as patterns) that exist within the

dataset to develop a better understanding of the data and allow for segregation into

various structures. Reinforcement learning is a form of machine learning that focuses on

developing an algorithm by using a reward structure to encourage ‘good’ results (such

as predictions, classifications, patterns, and outcomes) and discourage unfavourable

results through punishment (reduction or lack of a reward). These algorithmic methods

all work by receiving substantially large enough sets of data so that they may develop

and/or utilize internal algorithms to coalesce the information into clear, observable

output. In the context of this survey and this domain of research, the output may then be

used in a decision-making process such as whether or not to block an incoming network

connection, relay information to a node in the network, or incentivize a change in

software defined networking (SDN) parameters.

3. Traffic Classification

Accurately classifying network traffic is one of the most crucial tasks to be performed.

Unfortunately, due to the contextual nature of what is considered an accurate

classification, this is also one of the hardest tasks. The dimensionality of the

classification plane may range from a binomial distribution, in regard to threat detection

in its simplest form, to a theoretically boundless range in regards to network routing.

Traditional methods of traffic classification involve inspecting either the port or payload

to determine functionality. Although effective, techniques of this variety introduce extra

round trip time due to the need to read each packet which traverses the network. This
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introduction of packet delay is a focus in which machine learning techniques are trying

to resolve.

3.1 Current Progress

As the name suggests, this is solely a classification problem, and thus, although

unsupervised learning techniques may be utilized in the data pre-processing,

supervised learning is most used for the final classification. Due to the nonlinearity seen

in network traffic data, all work reviewed throughout this paper chose to utilize forms of

neural networks for classification. Although not explicitly mentioned, it is suspected

tree-based classification methods suffer from high error rates due to the complexity of

the data.

One of the issues when attempting to classify network traffic is the large dimensionality.

Fundamentally, this is an issue due to the fact that often, not always, only a small

subset of features in the dataset are utilized in accurately classifying the sample in

question. The features which are not needed in this process create data noise, and

potentially introduce patterns which will detrimentally skew the classification taking

place. To help combat this issue, dimension reduction methods are often used. [6] does

analysis on three distinct dimension reduction methods: Principal Component Analysis

(PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Autoencoding (AE).

PCA selects features by their variance, with the goal of maintaining as much variance

as possible. This selection is accomplished by utilizing a subset of orthogonal
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components from the dataset. Then, the linear combination which yields the highest

variance from this subset is determined. Resulting from the linear combination, high

dimensional data can be projected onto lower dimensions.

t-SNE initializes by calculating the pairwise distance between all samples. Following, all

samples are randomly projected onto the desired dimension. The stochastic

characteristics are used during placement refinement. On each step, pairs which were

close in the original dimension are adjusted such that their distance in the new

dimension is minimized. Likewise, pairs which were far apart in the original dimension

are adjusted such that their distance in the new dimension is maximized. Due to the

stochastic nature of t-SNE, its runtime is often much higher than other methods

mentioned.

AE is a special classification of neural networks. These differ significantly in comparison

to other neural networks as, unlike traditional neural networks which have a tree

structure shape, AEs are structured as an hourglass. This is due to the fact that the

wanted output does not get produced by the last layer, but from the center layer. The

purpose of an AE is to find a way to compress, or re-represent, the given data through

the use of a lossless function. Therefore, it is possible to reproduce the original data

from the compressed version. The first half of an AE represents the encoder, which is in

charge of determining a suitable lossless function. The second portion represents the

decoder, which attempts to reproduce the data upon compression. Once training is
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completed, the AE is split into the two distinct parts, where the encoder portion is

retained for the purpose of dimension reduction.

For each dimensional reduction method, [6] did analysis on both a semi-supervised and

unsupervised model, OCSVM and DBSCAN respectively. The dataset used for testing

consisted of 31 dimensions. Interestingly, the resulting scores showed in all cases in

which dimensional reduction of any degree was used in conjunction with OCSVM,

severe decreases to the accuracy occured. Contrastingly, utilizing DBSCAN, better

performance was achieved compared to using the full feature set. In particular, the

combination of DBSCAN with t-SNE reduction depicted a FP rate reduction of 16%,

while utilizing only 2 of the 31 dimensions. This is substantial, not only due to the

improved accuracy, but decrease in model complexity, and therefore, operation times.

As can be seen in the papers below, dimensional reduction is a key component of many

protocols. This reduction is largely seen in the pre-processing of data as well as the

processing of incoming data such that it fits the needs and comparisons drawn within a

protocol. An example of this may be seen in [7] which utilizes density based spatial

clustering of application of noise (DBSCAN) to determine data clusters for statistical

feature extraction, allowing for an algorithm that focuses on key differentiating factors

rather than those that may be inconsequential (and use unnecessary processing

power).This is not to say that all algorithms attempt dimensionality reduction but seeks

to highlight the fact that it is used to increase algorithm performance in traffic

classification.
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3.2 Future Work

It is no surprise that many advancements have been seen in the area of traffic

classification since, no matter the application, if machine learning is to be utilized in

networks, the first step needed is to correctly and accurately classify data. [6]

demonstrated compelling results for the use of dimensional reduction alongside

unsupervised models for physical layer anomaly classification. [7] saw slight accuracy

improvement though the utilization of a multi machine learning model method in

comparison to historical port-based techniques, although runtime analysis was not

completed. To properly determine if their proposed method is superior, future research

will need to take place with the inclusion of a more encompassing success metric plane.

4. Threat Mitigation

Threat recognition at current standards widely utilizes actively updated and maintained

databases of threats as they come to light and are realized by the research community.

This method is highly effective against threats that are known, but in the instance of

zero-day threats these preventative measures fail miserably. Another method widely

used, such as that by Solar Winds in [9] is to allow network administrators the ability to

monitor and verify a non-threatened network and use this network as a baseline. Under

[9], deviations from the baseline may have pre-chosen responses such as blocked

connections or throttled network access. While these systems may be effective at either

denying all known threats or denying all abnormal network access, they lack the

flexibility required in modern networks and the security measures to deal with zero-day
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threats. This gap in application abilities is perfect for machine learning implementations.

As will be seen in this section, machine learning presents the unique ability of actively

monitoring a system, recognizing threats in said system, and handling them accordingly

such that they do not impair or impart negative effects upon a network or connection.

4.1 Current Progress

At present due to the open space in which zero-day network threats may emerge, it is

required by machine learning based protocols that they possess the ability to adapt to

new and ever changing networks. The ability to adapt to new network conditions is

paramount in a trained algorithm's ability to filter and prevent threats without impeding

benign network traffic. As such, emerging protocols that seek to utilize machine learning

largely focus on techniques with the ability to integrate incoming data into their

algorithms. These algorithms at present largely focus on supervised learning and

constitute a majority of this section. To provide an accurate depiction of the field,

research forays into unsupervised learning and reinforcement learning will also be

discussed.

Eric Perruad developed an unsupervised learning algorithm [10] that utilizes a

developed k-means algorithm. Initially the algorithm will observe the network for a

determined number of steps, these observations are then normalized and then

transposed onto subspaces from which k-means and feature extraction are applied to

gather the necessary statistics for an abnormality equation. Once this subspace and

equation are developed the incoming packets are (once normalized) run through the
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abnormality equation. A significant enough abnormality deems the packet as a threat

and sicards it while a non-threatening packet is otherwise integrated into the existing

subspace and derived equation. Under Perraud’s observation this technique caught all

attempted DOS attack packets while maintaining a “very good false alarm rate”.

[11] combines both supervised and unsupervised learning methods in their proposed

Deep Auto-Encoder Intrusion Detection System (DAE-IDS). Deep auto-encoders are

multiple auto-encoders joined together in a daisy-chain fashion. The proposed DAE

consisted of four encoders. [11] mentioned one reason for using auto-encoders was to

utilize the dimensional reduction characteristics in which they bring. The supervised

learning aspect is introduced at the final layer, where a supervised model attempts to

classify the data that was outputed from the DAE. To help mitigate overfitting issues, a

greedy layer-wise training approach was used. Greedy layer-wise training is a scheme

where each layer is sequentially trained in a bottom up manner. This technique has

been shown to increase test accuracy in deep neural networks, due to an increased

generalization of the model, although higher training times are introduced. Testing took

place through the use of the KDD_CUP’99 dataset. Through analysis, it was shown the

optimal number of hidden layers and corresponding neurons was 4 hidden layers, with

32 neurons for each layer, resulting in an accuracy of 94.71%, with a 94.53% detection

rate. To evaluate the proposed DAE-IDS’s competitiveness in the field it was compared

to two prior existing models, DBN4 and AutoEncoder+DBN10-10. DBN4 and

AutoEncoder+DBN10-10 received an accuracy score of 93.49% and 92.10% respectively.

Unfortunately, the detection rate for these pre-existing methods were not recorded,
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therefore, although DAE-IDS showed higher accuracy then its predecessors, an

inclusive comparison is not possible.

[12] analyses the performance of using Convolutional Neural Networks, CNN, for

anomaly detection. CNN’s are popular models where complex data is needed, with their

most prominent use being with pictures. [12] tested three distinct models on three

distinct datasets. The models used were shallow, moderate, and deep, where the

naming represents the amount of convolutional and pooling layers used. The three

datasets used for testing were NSL-KDD, Kyoto Honeypot, and MAWILab. Kyoto

Honeypot is an unbalanced dataset while the other two are both balanced, where

balanced and unbalanced refer to the ratio of normal traffic and attack traffic seen. Tests

showed that either the shallow model outperformed both the moderate and deep model,

in regards to NSL-KDD dataset, or there was no noticeable higher performance

achieved between all three models, in relation to Kyoto Honeypot and MAWILab. Upon

comparing results to other NN techniques it was found CNN’s, on average, under

performed. [12] hypothesizes this is due to the 1 dimensional vector which represents

network traffic as CNN’s are most commonly used in conjunction with 2 dimensional

matrices.

[13] proposes a Deep Belief Neural Network, DBN. Testing on the NSL-KDD dataset,

which was previously seen in [12], resulted in a detection accuracy of 97.5%, a 4.66%

increase over existing DBN-SVM models which the proposed DBN was compared

against. Although important, detection accuracy is not the only crucial metric when the
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goal is an optimal real time intrusion detection system, execution time is just as

important. The proposed DBN achieved its accuracy in 0.32 seconds, a substantial

decrease in comparison to DBN-SVM’s seen time of 3.07 seconds.

Unlike most papers reviewed thus far, which primarily focus on intrusion detection, [14]

proposes a Autonomous Threat Mitigation framework, ATMoS. The goal of ATMoS is to

provide network administration a platform for rapid design and deployment of

reinforcement learning agents and consists of three parts: SDN infrastructure, host

behaviour profiling, and autonomous management. The SDN infrastructure holds two

key components: controller, and observer. As the naming suggests, the controller's job

is to act upon the commands outputted by the agent, while the observer provides the

agent with stateful information about the network. Host behaviour profiling is applied

during training time, enabling the agent to learn normal network behaviour along with

malicious actions. Autonomous Management is where the agent resides, along with

where all ML decisions are made. [14] determined the success of ATMoS could be

represented as the ratio between benign users’ quality of experience and attack

success. It is hypothesised that this definition of success will result in a more

generalized model which, instead of classifying distinct attacks, allows for the

classification of attacks based on their class. If correct, this allows for the possibility of

the agent being able to accurately detect and mitigate attacks which were previously

unseen as long as their class is known. ATMoS utilizes NFQ for its reinforcement

learning algorithm. A recurring issue with RL in the field of intrusion mitigation is in

designing a realistic action space for the agent. [14] decided to utilize virtual networks,
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VN, to represent differing security levels. Therefore, the action space can be

represented with three actions: move a host up a security level VN, down a security

level VN, or keep the host at the same security level VN. [14] represents a proof of

concept of their proposed ATMoS, and thus rigorous testing did not occur. Through

simulations It was shown ATMoS successfully detected and then mitigated both a TCP

SYN-flood attack along with a Advanced Persistent Threat, APT.

4.2 Future Work

Given the uniformity under which threat mitigation may be tested, future work may be

focused on analyzing all individual algorithms under the conditions proposed by a single

dataset. This coalescing of analysis onto a standard testbed would provide a solid base

for comparing, contrasting, and improving upon future algorithms. Similarly, common

performance metrics need to be agreed upon to realistically compare differing

implementations. [12] suggests further research is needed to see if network traffic can

be efficiently mapped into a two dimensional structure, with the hope of increasing

accuracy seen by CNN’s in regards to anomaly detection. [13] showed interests in

comparing existing results against a State Preserving Extreme Learning Machine,

SPEML, implementation. [14] showed success through their proof of concept

simulations, although more inclusive testing is required to determine the efficiency of the

proposed framework.
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5. Traffic Congestion Control

Traffic congestion in a simple network is primarily monitored and controlled for by

individual nodes in modern contexts that do not utilize machine learning. What machine

learning provides towards congestion control is an increased understanding of network

congestion particular to individual networks that they are applied on, due to the intense

scrutiny of data, ensuing pattern recognition, and resulting action of the applied machine

learning method. The key ability machine learning is able to provide is that it may

optimize congestion control under any circumstance to which it is applied without relying

on previously defined methods. The sections below discuss in-depth how these

algorithms are developed and implemented in computer networks and will compare

them to existing congestion control algorithms that do not utilize machine learning for

their optimization of network traffic flow.

5.1 Current Progress

Progress and research towards the development of machine learning based congestion

control methods in this section will begin with N. Kato et. al. [8] and the proposed

method for traffic control utilizing applied machine learning on heterogeneous networks.

This method is then followed by N. SelvaKumar et. al. [7] and their proposed method for

applied machine learning using supervised learning methods aided by unsupervised

filtering of data. The remainder of this section will in large part focus on the current

research surrounding congestion control using machine learning, which itself focuses on

reinforcement learning.
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5.1.1 Supervised Learning Congestion Control

Supervised learning is well suited for congestion control when paired with predefined

thresholds that may be used to differentiate classified data and act using predefined

congestion control methods. What supervised learning is able to supplement existing

congestion control methods is the ability to actively recognize and discriminate between

data points and to classify them as aiding or unaiding in the development of traffic

congestion. This information may then be used by aforementioned predefined methods

to control the congestion as it is recognized.

N. Kato et. al. [8] propose an algorithm that uses pre-processing via unsupervised

learning cluster methods to first group data points and filter outliers, the output dataset

is then analyzed for key statistical features which are extracted to create the final

processed dataset. This processed dataset is then fed into a supervised learning

method that acts to determine the best routing path for all nodes in a system. This

method theoretically produces minimal faults and congestion, but is costly in terms of

computing power (determining N paths for every node in the network). The method

proposed is further ill-suited towards rapid deployment, requiring a pre-existing dataset

of previous network traffic. These shortcomings result in a highly effective algorithm

when it acts upon the network upon which it is trained for, but also in an algorithm that is

unable to adapt to an entirely alien network or for an influx of unusual network traffic. To

evaluate performance, the protocol was compared to OSPF in relation to three metrics,

Signaling overhead, Average per hop delay, and Total throughput. Signaling overhead

was seen to decrease from 55x10^5 down to approximately 13x10^5. Likewise, Average
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per hop delay decreased from approximately 3200ms to approximately 250ms. Since

total throughput takes into account all parameters, an increase was seen from

approximately 15.83Mbps to approximately 16.13Mbps.

N. SelvaKumar et. al. [7] propose an algorithm similar to the algorithm noted above in

the fact that it utilizes pre-processing, however it contains notable key differences. The

proposed algorithm utilizes density-based spatial clustering in its feature extraction and

further uses back propagation in its development of the supervised learning

classification algorithm. This algorithm is then extended by caching and filtering, which

attempts to cache data for similar users and to cache data that is related to current

traffic. This caching is intended to reduce future strain on the network such that

congestion does not occur. To evaluate performance, the protocol was compared to a

historical port-based method. An overall performance score of 97.6% was achieved, a

1.4% increase compared to the port-based method. Although a higher accuracy was

achieved, due to runtime analysis not being included, it is unknown how their structure

compares to port-based methods in real time execution.

5.1.2 Unsupervised Learning Congestion Control

Unsupervised learning in the context of congestion control simply does not exist in

modern or pre-modern implementations. It was seen fit at the time of this paper that a

reason be given for the present lack of unsupervised learning methods for congestion

control in order to provide a full picture of congestion control methods. The reason

unsupervised learning is not seen for congestion control is that unsupervised
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congestion control seeks to uncover patterns and underlying data structures for the

sake of generating information, not generating actionable vectors. While unsupervised

learning may be applied in congestion control with an algorithm similar to the one

developed by Eric Perraud for threat mitigation, there has yet to be one seen in active

research.

5.1.3 Reinforcement Learning Congestion Control

Concerning reinforcement learning are two main branches, reinforcement learning and

deep reinforcement learning. Reinforcement learning (RL) in general attempts to

assimilate new information and conclusions into a method that is actively developed,

where methods such as Aurora [15], DRL-CC [16], SmartCC [17] and NeuroIW [18]

attempt to utilize existing datasets to achieve a pre-optimized method for congestion

control that is further optimized under new network conditions that it may encounter and

be applied to.

Aurora [15] develops a deep neural network (DNN) that consists of state-actions pairs

by observing pre-existing network congestion datasets that are supplied during training.

Once applied to a network, the algorithm will accept incoming information in the form of

states that it has already been trained on, such as latency and sending ratios from

neighbouring nodes. These states are then input to the DNN and a resulting action,

throttling, inaction, route change, etc. is executed. This method is resilient to large

network changes when trained properly on a large dataset, allowing the algorithm to be

deployed on networks previously unseen to the algorithm while maintaining low latency
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and large throughput. Comparison of Aurora is done in relation to TCP Cubic and PCC

Vivace [19], with the paper highlighting a decrease in protocol-related latency inflicted

upon the network in relation to bandwidth sensitivity and a larger link utilization in

relation to packet loss-rates.

DRL-CC [16] builds on previous ideology of utilizing existing datasets, and incorporates

several unique mechanisms. With initial reliance on a previously trained actor

(algorithm), the actor is further improved upon by a critic-mechanic which is able to

critique the actions of the actor under new circumstances by comparing the

performance increase or decrease to similar circumstances encountered in the past. In

addition to reliance on training with a pre-existing dataset, DRL-CC also incorporates a

long short-term memory that allows for further training to be accomplished while

simultaneously optimizing congestion for active flowing network traffic. This protocol

sees large improvements in goodput (useful throughput data), over existing TCP

algorithms, such as LIA and wVegas.

SmartCC [17] develops a Q-network entirely asynchronously from the execution of the

protocol. This design was chosen by the developers in order to provide minimal delay

during the network execution of the protocol. SmartCC adopts a multipath-congestion

approach similar to TQNGPSR seen below. After the algorithm is trained through active

observation or dataset learning, the algorithm acts upon a network by choosing and

directing traffic to different paths in a heterogeneous network. SmartCC also actively

adapts the congestion control window to network congestion. This protocol again sees
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improvements over existing TCP algorithms, such as LIA and OLIA as mentioned

previously in relation to DRL-CC. The improvements noted by [17] are an increase in

throughput, a reduction in network jitter, and a reduction in roundtrip time.

NeuroIW [18] focuses less on direct congestion control, instead focusing on the

optimization of the initial congestion control window (IW), which is then utilized by

existing TCP. This indirect method of optimization is based on rules developed by a

previously trained decision-making network, which is adaptive to network conditions

through the implementation of a review mechanic that observes the resulting flow

completion time in comparison to the previously unadjusted flow completion time. The

research suggests that NeuroIW performs better in average flow completion time when

compared to a SmartIW [20] algorithm and a static IW of 10.

Moving forwards from DRL to pure reinforcement learning, QTCP [21], TCP-RL [22],

and TQNGPSR [23], are all algorithms that focus on the development of a congestion

control method when actively involved in network congestion control. These algorithms

present a highly dynamic approach that may be applied to various network conditions

due to their lack or reliance on existing pre-defined information, as in the case of DRL

methods. These algorithms may therefore be implemented at any time to a network

without prior information regarding network topology, link state, and other various

network conditions and are best suited towards applications where a network is highly

dynamic or there does not exist a pre-existing coherent dataset.
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QTCP [21] was the first congestion control protocol that actively used a naive

reinforcement learning algorithm to determine the optimal congestion control policy. This

is done by building off of existing transmission control protocols and passing off control

of their rules to a Q-network, which attempts to derive the optimal policies to adopt for

individual networks through controlling the congestion control window in regards to the

multiple states the algorithm may review as input. The proposed algorithm presents a

larger throughput and a lower latency when compared to NewReno.

TCP-RL [22] actively monitors both the congestion control window (CWND) and the

congestion control policy that uses said window. This allows both fast adaptation for

quick, short traffic flows to ensure optimal network reaction time as well as long term

adjustments and preparation for long traffic flows. The CWND is optimized on the fly

through reinforcement learning, while the data obtained during ongoing use is integrated

into a deep reinforcement learning portion of the protocol that serves to determine the

congestion control policy. Research comparisons are drawn from multiple branches of

TCP such as an IW of 10 and 200. It is conclusively stated that TCP-RL in the course of

the analysis performs better in terms of throughput and a lowered roundtrip time.

TQNGPSR [23] is a development on top of the existing QNGPSR algorithm, which

utilizes a Q-network to determine optimal paths in an adhoc network using GPS

positioning and various network conditions. TQNGPSR in turn, adds the queue length of

the nodes surrounding the active machine so that it may become traffic aware and

actively adjust and compare the Q-value (optimality) of routes. When the queue length
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reaches a threshold that causes the Q-value of a route to fall below an alternative route,

this route will then be chosen for new packets that must be forwarded by the active

machine. This process continues throughout the lifetime of the network, with the

Q-value being actively adjusted as traffic queues are filled in surrounding nodes. In

summary, TQNGPSR attempts to control congestion by actively monitoring and

comparing surrounding queue lengths, network topologies, and link-reliability. The

specific addition of queue lengths in the calculations of the Q-network allow for

congestion monitoring and therefore control. TQNGPSR appears as a star above

existing flying ad hoc network protocols, improving upon the packet delivery ratio,

end-to-end delay, and throughput when compared to existing algorithms such as OLSR

and AODV.

In all circumstances observed and surveyed above, it is worth noting that extensive

testing was uncompleted for individual algorithms; instead the conclusions developed

for the algorithms in question were interpreted from limited test conditions and through

comparison to existing previous generation TCP algorithms, such as wVegas, OSPF,

traditional TCP, etc., of which all of the above algorithms surpass their individual test

cases. In all instances, due to the uneven test circumstances and variance in protocol

comparisons, one is unable to make conclusive statements about the benefits of one

algorithm over another.
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5.2 Future Work

Current implementations exist across a variety of network spectrums from ad hoc

(TQNGPSR), to static (Aurora), to dynamically changing (NeuroIW). This vast range of

applications clearly implies that congestion control can be actively and with great effect

be implemented with regards to, and reliance on, machine learning. In the future due to

highly dynamic environments and in order to prepare for situations yet unknown, the

next steps towards a unified and optimal congestion control protocol should focus on

the implementation of a DRL algorithm that is able to actively optimize itself in a highly

dynamic environment. The adaptation towards highly dynamic environments in unison

with the ability to rely on previously generated state-action pairs will allow, in the opinion

of our team, the best performance in future congestion control governed by machine

learning. It is further the opinion of our team that individual algorithms be more

extensively tested outside of their proposed test cases, as in the case of all machine

learning, an algorithm may too easily become over-trained or optimized for individual

use-cases. This testing would further allow for direct comparisons made between

machine learning congestion control protocols.

6. Summary

In brief as seen above, supervised is used to an extent that heavily utilizes

unsupervised learning clustering methods for the purposes of network management. In

addition to the usage of supervised and unsupervised learning applications, focus is

also turning towards reinforcement and deep reinforcement learning methods such as
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Q-Networks for the purposes of network state-action pairs and conditions. Below we will

discuss in brief conclusions that may be drawn from the above field analysis.

Traffic classification at present depends on development of improved supervised and

unsupervised learning methods. These methods under current use are used to perform

feature extraction such that other algorithms may utilize a dataset that presents

differentiating rather than analogous data between different network packets and

information. As both clustering methods and feature extraction methods improve, such

as advancements in autoencoding or principal component analysis, it is doubtless that

these advancements will transfer over towards more efficient and accurate traffic

classification for use under machine learning algorithms. While machine learning based

traffic classification on its own is not deemed the most useful concept, the field and its

research present the unique ability for network data to be identified based on surface

analysis rather than existing network packet analysis tools such as WireShark. It is of

further importance in noting that traffic classification under machine learning presents

the ability to determine the true intent of a packet, such as in the case of a DOS attack

that may act under the guise of regular ICMP traffic.

For threat mitigation the field largely focuses on utilization of supervised learning

methods such as convolutional networks and belief networks, etc. These networks are

often used without dimensionality reduction, however in the case of [11] it is noted that

dimensionality reduction over deep auto-encoding is chosen for its analytical benefits.

At current standards the methods used provide upwards of 90% accuracy for threat
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detection upon tested cases. It is of further mention that the implementation of

reinforcement learning threat mitigation methods are being explored, such as in the

case of ATMoS which developed reinforcement learning agents alongside a threat

mitigation framework for network control. While the field possesses greater accuracy for

novel threats than existing methods, it is still in its infancy and avenues that may bear

greater fruits have yet to be pursued. With the advent of ATMoS introducing scalable

reinforcement learning threat mitigation methods, it is doubtless that many more

reinforcement learning algorithms will follow.

For congestion control it is clear that the majority of work at current focuses on the

development or reinforcement learning and deep reinforcement learning protocols. In

addition to the reinforcement learning research, supervised learning based algorithms

are also seen achieving greater accuracy than previous generation TCP algorithms. The

improvements seen in these algorithms in great part focus on the improvement and

modification of TCP and various functions within it, although there are notable instances

such as adaptations of GPSR. It is the goal of these algorithms to, instead of developing

an entirely new protocol, optimize existing protocols such that they perform as best

possible under various circumstances and network conditions. These methods are

optimal in that they are able to be deployed on portions of a network such as a

business’ private network and still allow regular traffic to flow from outside the network

without modifying the packets that are involved in the congestion control scheme.
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7. Future Work

Future work falls under two categories of issues that are witnessed in this field of

research. The first issue is that due to the recency of this field, there is a lack of

standard testing procedures including environment variables, comparison metrics, and

comparisons themselves. We propose that general rules be developed for the purpose

of protocol comparison. These rules could include standardized testing conditions as

well as a list of protocols that must be compared to the proposed protocol. Upon

completion of these rules, a protocol may be further explored and tested in a wide

variety of use-cases to showcase other benefits it seeks to present. The second issue is

the broad spectrum of improvements that may be made to existing algorithms which will

now be focused on. Below will be three areas that are believed to be of great

importance to the improvement of machine learning applications.

Properly training of an algorithm is one of the more difficult steps for a protocol. This can

be noticed in both the required time to train and the required data on which an algorithm

may be trained. The gathering and human processing of this data requires an immense

amount of time in order to have a workable data set, and the time training the algorithm

is time that is not being spent deployed on the network. This issue is overcome in the

instance of both naive reinforcement learning algorithms and unsupervised

cluster-recognition algorithms, however this naiveness can develop poor initial

responses to congestion and threats in a network. What may be best focused on to

mitigate this issue is the development of highly adaptable pre-trained protocols such as

those based on supervised or deep reinforcement learning. This development will likely
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come with advances in the field of machine learning itself but it goes without saying that

further human development specific to the integration of machine learning on computer

networks may bear positive results specific to algorithm adaptivity to extreme network

conditions.

Execution time of a protocol is of further concern for network administration. While

congestion control has the failsafe of simply allowing congestion to occur, threat

mitigation must be fully aware and able to respond to threats before they are allowed to

spread throughout a network. This hypervigilance a threat mitigation protocol must

possess has the positive effect of actively filtering out all threats, while also having the

negative effect on traffic flow time due to its screening requirements. As seen by the

requirement that Perraud [10] develop his own algorithm in order to have one that is

efficient enough that it may be run on nearly any CPU without incurring large calculation

times. It is imperative that machine learning implementations be done in such a way that

they have minimum effect upon their target network. In the future, research may be

focused on maintenance of low computation, high efficiency protocols that are able to

work effectively on their given task without negatively impacting traffic RTT.

Finally, as always for cutting edge research and in fact all research that requires

precision, accuracy is an area that stands to be constantly improved upon. At current,

accuracy for supervised and deep reinforcement learning algorithms depends on their

training, wherein they may perform poorly if they are introduced to environments for

which they have little experience observing and acting upon. An improvement that may
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be possible in future works are enhanced datasets paired with algorithms that are able

to actively differentiate between various network conditions accurately and precisely.

Evidence of room for improvement can be seen in the algorithm proposed in [13]

possessing a 97.5% detection accuracy or in Perraud’s algorithm [10] which posses

100% accuracy for detecting threats while also being over zealous in its classification,

causing less than 100% of benign traffic to be correctly classified. While the algorithms

presented today are reasonably accurate under their current test and use cases, there

is still room for improvement that may be seen in future work and research.

8. Conclusion

In conclusion, it is clear that steps to implement machine learning into network

communication control and management have clear benefits. These benefits are widely

seen in machine learning allowing for greater accuracy when detecting, classifying, and

preventing threats from infiltrating a network and in the numerous congestion control

algorithms that may be utilized for optimization of existing network connections. While

network classification may not appear to be a prevalent topic at the time of writing, it is

of comprehensible importance in the deployment of almost all the algorithms discussed

due to their needs for classified data in order to act upon the networks under

management. While congestion control and threat mitigation may see individual

advancements, it is clear that steps towards improving traffic classification methods will

doubtlessly see improvements following in both aforementioned fields. All things

considered, the field for network communication and management utilizing machine
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learning is alive and well, presenting ever new and improving solutions that will

unquestionably benefit networks of the future as well as the present.
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