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Abstract 

The goal of our project is to create a reinforcement learning agent which is able to beat a 
randomly playing opponent at the game of Connect 4. Reinforcement learning is perhaps the 
most promising sub-field of machine learning, thus the inclination to explore the process of 
devising and implementing a solution to a problem using research from the pioneers in the field. 
Two player perfect information games such as Connect 4 are perfect training grounds for an 
agent to be unleashed in, as the environment is able to be explicitly defined. The agent 
opponent and environmental impact on an agent was investigated at a high level to keep within 
the scope of this course. 
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1 Introduction 

1.1 Introduction to Reinforcement Learning 

Reinforcement learning is the branch of machine learning that focuses on training agents on 

specific tasks using a system of rewards and punishments [21]. Like supervised learning agents, 

reinforcement learning agents have training stages. However, where supervised agents are trained 

by labeled data sets, reinforcement learning agents optimize through a process of receiving 

positive and negative reward based on their actions. In this way, they are conditioned towards 

actions that result in the greatest accumulation of positive reward. Hence the name: reinforcement 
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learning. Reinforcement learning has a broad range of applications including robotics, chess and 

self-driving cars. The types of problems that are suitable for reinforcement learning applications is 

an ever expanding field [3]. 

1.2 Aims and Objectives 

Our goal for this project is to to apply reinforcement learning to the classic game Connect 4. Since 

Connect 4 is considered a solved game [6], a game whose outcome (win, lose, draw), can be 

correctly predicted from any position, assuming that both players play perfectly [22], we felt that 

this game in particular offered a clear optimal benchmark for our agent to potentially achieve. 

While the idea of training an agent that could ultimately converge to a solved Connect 4 policy was 

an appealing, albeit lofty goal, it was not our main objective. Due to our current collective 

experience level with reinforcement learning, our main focus for this project was to design a 

functioning agent that performed better than simply making random moves, and then to attempt 

to understand, improve and quantify what differentiates a successful agent from an unsuccessful 

one. 

2 Background information 

2.1 Connect 4 

Connect 4 is a two player board game, in which the players choose a colour and then take turns 

dropping coloured discs, sometimes referred to as checkers, into a seven column, six row vertically 

suspended grid. The pieces fall straight down, occupying the lowest available space within the 

column. The objective of the game is to be the first to form a horizontal, vertical, or diagonal line 

of four of one’s own discs [22]. 

2.2 Terminology 

The following is a list of definitions for some of the terminology that will be used throughout this 

report: 

• Policy: The strategy of the agent. 

• Reward: A metric of positive reinforcement. Accumulating the max reward possible is the 

goal of the agent (for better or worse). 

• Time Steps: A measure of time used to delineate when discrete actions occur in relation to 

one another. For our purposes, time steps affect the number of calculations that are made 

during training. 

• Perfect Information: A game has perfect information if each player, when making any 

decision, is perfectly informed of all the events that have previously occurred, including the 

initialization event of the game [23]. 

• PPO vs PPO2: Stable Baselines recommends using their PPO2 algorithm instead of PPO. The 

only differences are: 
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1. PPO2 is optimized for GPU’s. 

2. PPO2 allows for vectorized environments to batch training steps across multiple 

instances of an environment [12]. 

*At any point in this paper when referring to PPO implementation, PPO2 is what was used. 

3 Proximal Policy Optimization 

3.1 Background and Why PPO? 

During the planning stage, one of our considerations was which reinforcement algorithm would be 

best suited to our needs. The process of picking the most appropriate algorithm, along with a 

reliable implementation, was something that prompted much discussion. Ultimately PPO was 

chosen for its performance and reported ease of implementation [5]. 

3.2 What is PPO 

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that was designed to out 

perform other policy gradient methods while simultaneously being easier to implement. The heart 

of PPO is contained in two steps: 

1. Sampling the environment to collect and assess data 

2. Optimizing the objective function using stochastic gradient descent [7] 

At each step of the game, PPO will run its current policy for T time steps and calculate T advantage 

estimates (the estimate of the relative value of the selected action [7]. To calculate the surrogate 

objective function, we take the expectation of the optimal advantage estimate multiplied by the 

probability ratio denoted as: 

 

3.3 Clipping 

CPI in the above equation stands for Conservative Policy Iteration and refers to the fact that PPO 

uses a "clipping operation" to help prevent the policy updates from ever taking steps that may be 

considered excessively large and therefore overstep the optimal policy altogether. This is 

highlighted in the main objective function for PPO, which is the heart of the algorithm. The main 

objective function is denoted: 

 

What the above formula expresses is in order to calculate the main objective function we calculate 

the expected minimum of two terms: 

1. rt(θ)Abt: The default objective for normal policy gradients that yield a high positive advantage 

over the baseline [5] 
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2. : Similar to the first term except we apply a clipping operation of 

1A typical value for  

The value of the clipping operation is that if the advantage estimate is positive, the policy will never 

increase greater than in the event that the current action is a lot more likely under the new 

policy than the old [5]. Any additional increase will result in no change to the existing policy past 

this point. A similar stabilization happens when the advantage function is negative and the resulting 

action is far less likely under the new policy. The latter scenario is the only time where LCLIP(θ) 

returns 

 

3.4 Stable Baselines and Optuna 

PPO was initially developed by the research company OpenAI [11]. However, OpenAI’s 

implementation of PPO (OpenAI Baselines) is considered to be inflexible due to its inability to 

modify agents or add custom environments. A more flexible and better documented fork of the 

OpenAI Baselines repository called Stable Baselines was ultimately chosen [15]. 

Along with Stable Baselines, we decided to use Optuna [13], an open source hyperparameter 

tuning framework to automate the process of selecting hypterparameters. 

3.5 PPO Hyperparameters 

Using Optuna we determined these "optimal" parameters: 

Parameters Value 

Gamma 0.99 

Steps per update 128 

Entropy 

coefficient 

8e-3 

Number of Epochs 8 

Lambda 0.8365 

Here’s a brief description of what these parameters are doing: 

• Gamma: A parameter which biases the policy towards choosing the advantage estimate that 

gives the highest most immediate reward. Simply put, a reward this move is more valuable 

in the same reward three moves from now. 

• Steps per Update: The number of steps to run for each environment per update. 

• Entropy Coefficient: The coefficient for the entropy loss calculation term. 

• Number of Epochs: The number of Epochs when optimizing the surrogate objective function. 

• Lambda: A second hyper parameter for the advantage estimate [2]. 
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3.6 PPO Hyperparameter Analysis 

The following analysis was done using Kaggle’s Connectx Environment. It has the following reward 

function: 

Action Value 

Game Win +1 

Game Loss -1 

Game Tie 1/42 

Valid Move 1/42 

Invalid Move -10 

3.6.1 Optimized vs Unoptimized 

Our expectation prior to running this experiment was that the hyperparameter tuning would have 

a potentially significant, and at the very least nontrivial, impact on episode reward (the cumulative 

amount of reward the agent sees). Although we do see an asymptotically faster rise in episode 

reward for the optimized agent, ultimately by the end, as shown in Figure 1, there appears to be 

no significant difference in either the total amount of episode reward gained or the asymptotic 

slope of the entropy loss (which affects the amount of exploration the agent undergoes while 

searching for the optimal policy). 

 

Figure 1: Optimized vs Un-optimized PPO Agent in the Kaggle Connectx Environment 

3.6.2 Static vs Non-Static Learning Rates 

One of our theories as to why the optimized agent was not reaching a higher episode reward than 

the un-optimized agent was that Optuna only returns static values for hyperparameters. Learning 

rates typically decrease over time [4] so a callable function was substituted for the initial floating 

point value obtained from Optuna. Interestingly enough, this resulted in a far worse performance 
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by the optimized agent. As shown in Figure 2, the optimized agent’s max episode reward never 

rises above even -1 after some initial noise early on. 

 

Figure 2: Optimized vs Un-optimized PPO Agent with Static vs Non-Static Learning Rates 

4 Environment 

In order to train a reinforcement learning agent, it is necessary to precisely define the 

environment in which it operates. To get things started, we used a pre-built Connect 4 Kaggle 

environment, and later shifted to developing our own. The Stable Baselines implementation of the 

PPO2 algorithm requires an environment of a particular type, namely one which is derived from 

OpenAI Gym’s environment class. The derivation involves defining the following: 

1. Action space: The set of all possible moves the agent can take. 

2. Observation space: The set of all possible scenarios the agent can encounter. 

3. Environment functions: Functions such as altering its state given some input. 

We were interested in how agents which are trained on either environment differed. The following 

sections are an analysis of how they did. 

4.1 Change in opponent behaviour 

Initially the environment was developed to play versus a random opponent. Upon making a turn 

the environment would randomly select a legal column to place its move. This allowed the agent 

to develop its playing ability. Without an opponent to play against, it would not be able to learn as 

the environment would not be active. In an active environment, the agent’s interaction must be 

met with a reaction in order to obtain a relative reward to the training goal. Upon observation of 

the agent’s modelled on this environment, it was clear to the team that an alternative agent was 

required. A more intelligent environment agent theoretically conditions the learning agent to play 

better, as it must find ways to win in the environment in order to gain rewards. This led to the 
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development of a Minimax environment to mirror the implementation of Negamax found in the 

Kaggle environment. 

4.2 Minimax Implementation 

After training an agent primarily using a random move opponent, it became clear that its 

performance was sub-optimal when pitted against a human opponent. In order to increase the 

agent’s capabilities, we decided to train it against a stronger opponent, namely a search based 

algorithm which we developed ourselves. The opponent which we created for the agent was a 

Minimax search algorithm with alpha-beta pruning. A Minimax search algorithm is a type of back-

tracking algorithm which is used to find the optimal move for a player assuming that the opponent 

or opponents also play optimally [14]. It is typically applied to two player, perfect-information 

games like chess, so it was the perfect candidate for our Connect 4 opponent. The algorithm 

creates a tree like structure which represents the game starting from the current position p as the 

root of the tree. The tree then branches based on all the actions A which can be taken from p. Each 

of the children nodes of the root therefore represent the game state after each of the opponent’s 

possible moves. Usually expanding the game tree entirely is unfeasible as there will be many states, 

which is clearly the case for the game of Connect 4, which has (4.53199 · 109) possible states. The 

solution is to set a depth parameter which builds the tree up to a certain amount of future moves. 

At each of the nodes, a static evaluation function assesses the position’s value for the player we 

want to optimize. Our implementation relies on some basic heuristics to evaluate positions such 

as the number and length of streaks of markers the maximizing player has obtained in that position. 

The algorithm then recursively backtracks to find the optimal move for the maximizing player at 

position p. The implementation can be found in the minimax and game python files within our 

submission. 

 

Figure 3: A minimax tree, with current gamestate p, decisions [0,1,...7], and resultant gamestates 

with their static evaluations. 

4.3 The Effect of Environmental Agents 

Due to restrictions related to the custom environment’s implementation of the minimax algorithm, 

data was not able to be gathered relating to it’s specific effects. In lieu of minimax, the negamax 

opponent implementation in the pre-built Kaggle environment proved to be a successful adversary 
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to train the agent against, in the sense that it provided a challenge. The increase in difficulty, and 

subsequent decrease in mean reward, can be seen in Figure 4. 

 

Figure 4: Episode reward for Kaggle agent trained against a random opponent and a negamax 

opponent. 

In the figure, the model can be seen obtaining an average score that is analogous to losing a 

game when training on a negamax based agent. Notably, the figure displays a more shallow 

logarithmic curve than the curve of the agent trained on the random environment. This points to 

the fact that a stronger opponent is more challenging to compete against, as is expected. Finally, 

in learning against a difficult opponent it follows that the agent must adapt to a policy that more 

closely resembles the penultimate policy. This statement is corroborated by the table found 

below, which exemplifies the effect of the training an agent on different environmental agents. 

While the featured agents do not show notable performance in terms of winning Connect 4, the 

comparison between their mean reward is where conclusions may be drawn from. The specific 

conclusion to note is that the agent trained against a negamax opponent posses a greater mean 

reward than that of a random agent, suggesting that it is performing better in comparison. 

Environmental Learning Agent Mean 

reward: 

Games 

Completed 

Random -1.2 123 

Negamax -0.7 111 

4.4 The Effect of Training Length 

As the number of episodes an agent undergoes increase, it follows that the agent is able to interact 

with, and therefore generate, increased data with the environment. In theory, with more 

information to learn from, the agent is able to generate an increasingly more sophisticated policy 

network. Interestingly, our initial runs of 100,000 timesteps demonstrated an agent that 

performed significantly better in the custom environment with a reward convergence at 0.84 

compared to 0.57 of the Kaggle agent (Fig 5a). After this threshold the reward of the agent within 

it’s training environment appeared to converge on a final value representing its ability to play the 

game against its opponent agent. To further investigate the effects of training length, the agents 

were trained for one million timesteps. 

The Kaggle agent displayed dramatic improvement up to 0.91 while our custom agent improved to 

0.96 (Fig. 5b). 
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Figure 5: Effects of timestep on the agent’s episode rewards in the Kaggle and custom environment.  

 

Figure 6: Stabilization of the value function loss for Kaggle agent and custom agent. 

To confirm, we used Stable Baseline’s policy evaluation helper function [2] on one million 

timestep trained agents and obtained similar mean reward values of 1.0 and 1.0 for the Kaggle and 

custom agents respectively. This indicates that the agent has settled on an optimal policy. When 

approaching the optimal policy the agent lowers the learning rate in order to maintain the chosen 

policy with minimal changes. This results in the episode reward graph taking a logarithmic shape 

as the length of training increases. The agent appears to continue converging towards a 

penultimate policy after the threshold, but at a significantly decrease rate. Similarly, the value 

function loss in Figure 6 shows a decrease as learning progresses, indicating that reward has 

become stable [1]. 

4.5 The Effect and Implementation of the Reward Function 

The reward function for both environments followed similar scales. An agent trained on either 

environment obtained a reward of 1 for winning, and inversely, −1 for losing. Upon making a legal 

move, the agent was given a reward of 1/42. Where the two environments differ is in their 

approach to illegal moves done by the agent during it’s learning process. The agent in the Kaggle 

environment will receive reward of −10, leaving it up to the agent to discover and learn where it 

went wrong with its interaction with the environment. In the custom environment built by the 



11 

team, the agent is not given the ability to make an illegal interaction. The agent is instead allowed 

to continuously make moves while receiving no reward. Upon making a successful move, the agent 

is awarded the 1/42 reward for making a legal move. This method for the reward was chosen to 

accelerate learning time, similar to coaching the agent on the legal options rather than punishing 

it without explanation on the illegal options. 

Despite the learning and reward stabilization observed earlier, it would appear that the Kaggle 

agent was still making more random decisions than the custom agent as seen in the entropy loss 

graph Figure 7a. Although the difference in the policy gradient loss (Figure 7c) is small, the lack of 

oscillation in the Kaggle agent signifies that the agent believes it has found an optimal policy. Given 

these discrepancies in policy optimization we suspect that the reward implementation can 

influence the way an agent learns. 

 

Figure 7: Policy convergence for Kaggle agent and custom agent. 

5 Discussion 

While hyperparameter tuning did result in some initial increase in episode reward (fig. 1a), 

ultimately the gains were insignificant. This is most likely due to the fact that PPO is considered far 

less sensitive to hyperparameter tuning in comparison to other policy gradient methods [5]. 

Typically early in training we can see how tuning increases the learning efficiency without having 

to increase the learning rate. However, final convergence seemed unaffected and the agents 

performance was very poor. An increase in timestep amount did appear to improve agent learning 

curve significantly but this did not translate into performance. 

Our initial assumption pertained to a potential agent bias problem. In reinforcement learning 

it can be the case that an agent performs well in the training environment but poorly outside of 

that setting. Unfortunately, the agent’s poor performance seen in Figure 4 was not indicative of an 
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opponent bias. Upon further inspection it was observed that the agent’s reward does stabilize, 

Figure 6. It is possible then that the agent stable but making inaccurate value estimations, which is 

a characteristic of a high bias agent [9]. It is possible that our reward system is too naive and 

therefore hindering the learning rate. There has been evidence demonstrating enhanced learning 

using multiple goal states [10]. It is also the case that a poor reward function can result in a policy 

which demonstrates less optimal behaviour [7]. 

 

Figure 8: Stabilization of the value function loss for Kaggle agent trained against a random 

opponent and a negamax opponent 

This bring us to our second assumption: The environment, more specifically the environment’s 

reward system has a large influence on an agent’s learning rate. Although both environments had 

a naive reward system, there was a noticeable difference in the policy changes seen in figure 7: 

The punishment system implemented by Kaggle resulted in a lower performance playing connect 

4 than our custom agent which had no punishment system. This begs the question: Can B. F. 

Skinner’s theory of operant conditioning [18], reward and punishment systems, be applied to 

produce intelligent machine learning agents? 

5.1 Poor performance of Agent 

The agent’s poor results can be attributed to the lack of competition it faced during its training 

process. The custom minimax agent, which relied on exponential time complexity heuristics and 

state checking proved to be too cumbersome to train against for large numbers of episodes. In the 

future, we would look at reconstructing the heuristic evaluation function such that the time 

complexity of the algorithm was not as bad as it is in its current state. Further, the heuristic function 

itself can be optimized, which is an avenue which we did not pursue in the scope of this project. 

In addition to creating a somewhat intelligent opponent for our agent, if we were to continue 

working on this project we would consider playing the agent against previous, less competent 

versions of itself. This idea of bouncing an agent off of its previous iterations in order to continually 

improve is a true and tested approach within the field of reinforcement learning. 

5.2 UI visualization 

In order to give our agent a stage upon which to showcase its abilities, we created a user interface 

using Python libraries Pygame and Pygame GUI. The program allows the user to play Connect Four 
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against a human opponent or a trained agent. It also allows the user to watch the agent play 

against itself. 

 

Figure 9: A screen capture of our UI after the completion of a game. 

6 Conclusion & further research 

In this paper, we have demonstrated how robust PPO is to hyperparameter initialization when it 

comes to reinforcement learning. However that is not to say that hyperparameter tuning cannot 

improve, or on occasion worsen, results. Further demonstration showed that a PPO based agent’s 

learning rate can be influenced by the environment itself, such as the reward system and the 

difficulty of the environmental agent. 

While analysis was done at great length upon the implemented methods and tools, there are 

notable improvements that can be done for future research. One improve could be made by 

implementing a broader range of policy networks and comparing their individual performance 

before attempting hyperparamter tuning, thus giving the best agent the best chance of developing 

a solved Connect 4 policy. In terms of developing a solved Connect 4 policy, a beneficial factor may 

be an increased set of rewards which coach the agent on a strategy that resembles the solved 

Connect 4 algorithm. It may be argued that the implementation of rewards related to the defined 

Connect 4 algorithm detract from the machine learning component of these experiments - this 

distinction is left to be made by future researchers. 
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Appendices 

A Tools Used 

This project was programmed using Python 3, specifically Python 3.6 and 3.7. There were a 

number of additional third-party libraries, many of them new to us, that were used as well. The 

following is a list of libraries that were specifically and directly used by us, however, additional 

libraries are used implicitly within some of these as well: 

1. Numpy: Adds support for large, multidimensional arrays and matrices [20]. 

2. Gym: A toolkit for developing and comparing reinforcement learning algorithms [19]. Gym 

also functioned as a wrapper class for our custom environment. 

3. Pygame: A library of computer graphics designed to aid in writing python based video games 

[24]. 
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4. Pygame Gui: An extension of Pygame that adds additional functionality for building graphical 

user interfaces. 

5. TensorFlow: An open source machine learning platform consisting of extensive set of tools 

and libraries [17]. 

6. Tensorboard: Tensorflow’s visualization toolkit used for tracking and visualizing metrics such 

as reward, loss and accuracy [16]. 

7. Stable Baselines: A fork of OpenAI’s Baselines implementation of PPO. 

8. Kaggle Environments: A library to aid in episode evaluation [8]. 

9. Optuna: An open source hyperparameter optimization framework [13]. 

Venv, a module that helps create virtual environments, was also used and is part of the Python 

Standard Library. 

B Github Repository 

https://github.com/selfsim/Connect4 


